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The maximal steady frictional exchange flow through a rectangular channel of
constant width is analysed within the context of internal hydraulics. A one-
dimensional analytical solution to the fully nonlinear problem of two-layer frictional
exchange is developed and shown to compare well with experimental and field data.
The analytical solution gives the maximal exchange flow rate and the variation in
the height of the density interface along the channel for the case of zero barotropic
forcing. In contrast to the assumed constant interface slope of previous theoretical
formulations of frictional exchange flows, the resulting density interface is found to
be nonlinear and asymmetric. Both interfacial and bottom friction play important
roles in determining the exchange flow rate. It is shown that the frictional effects are
important even in relatively short channels.

1. Introduction
Exchange flows are often driven by a slight density difference due to temperature,

salinity and/or sediment concentration variations across a constriction connecting
two water bodies. The exchange flow through the Strait of Gibraltar, where less saline
North Atlantic water flows into the Mediterranean at the surface and more saline
Mediterranean water flows out at depth, has attracted considerable attention (Armi &
Farmer 1985). Other examples include the exchange flows through: the Bosphorus and
Dardanelles (Defant 1961; Gregg, Özsoy & Latif 1999); the Bab el Mandab (Smeed
2004); the Great Belt connecting the Baltic and North Seas (Ottesen-Hansen &
Moeller 1990); and the Burlington Ship Canal connecting Hamilton Harbour with
Lake Ontario (Lawrence et al. 2004).

Many features of exchange flows have been successfully modelled by the hydraulic
theory of two-layer inviscid flows (Armi & Farmer 1986; Farmer & Armi 1986), in
which the nonlinear inertial effects are considered. Studies of frictional exchange flows
have often ignored the inertial effects (e.g. Anati, Assaf & Thompson 1977). However,
under many circumstances, both frictional and inertial effects are important and
both should be included in the theoretical formulation of exchange-flow problems.
To include both effects, investigators have resorted to numerical techniques (Assaf &
Hecht 1974; Oğuz et al. 1990; Zaremba, Lawrence & Pieters 2003).

This paper presents an analytical solution to the fully nonlinear problem of frictional
two-layer exchange flow. After presenting the theoretical background in § 2, the
analytical solution is developed in § 3. Laboratory experiments are presented in § 4.
The analytical solution is tested against the laboratory experiments and field data
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Figure 1. (a) Plan and (b) side views of the flow configuration for maximal two-layer exchange
flow through a rectangular channel connecting two reservoirs of slightly different densities. H
and b are total fluid depth and channel width, respectively. ρi , yi and ui are density, layer
thickness and horizontal velocity for layer i, respectively. Subscript i = 1 represents the upper
layer, while i = 2 represents the lower layer.

from the Burlington Ship Canal in § 5. In § 6, the effects of friction on the exchange
rate and the longitudinal profile of the interface are discussed.

2. Theoretical background
Consider frictional two-layer exchange between two large reservoirs containing

water of slightly different densities connected by a rectangular channel with a flat
bottom, as depicted in figure 1. The flow is steady without barotropic forcing,
and relative density difference between the two fluids is assumed to be small. This
configuration is simple enough to allow an analytical solution while still resembling
many natural exchange flows. Removing the complications of variable topography
isolates the effects of friction.

Following Schijf & Schönfeld (1953) and Zaremba et al. (2003), the effects of
friction in two-layer flows can be accounted for using:

dEI

dx
= Sf , (1a)

where the internal energy,

EI = y2 +
(
u2

2 − u2
1

)/
2g′, (1b)

the friction slope,

Sf = 1
2
fbF

2
2 + 1

2
fI

(�u)2H

g′y1y2

+
fw

b

(
F 2

1 y1 + F 2
2 y2

)
, (1c)

and the layer Froude numbers,

F 2
i = u2

i

/
g′yi (i = 1, 2), (1d)
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where x is the horizontal distance from the left-hand end of the channel of width b.
The subscript i = 1 represents the upper layer, and i = 2 the lower layer. The layer
densities, depths and average velocities are represented by ρi, yi and ui , respectively,
and the velocity shear between the two layers �u = u1 − u2. The reduced acceleration
due to gravity, g′ = εg, where ε = (ρ2 − ρ1)/ρ2. We focus on flows with ε � 1 and
F 2

i = O(1), which allows us to make the rigid-lid approximation that the total depth
H = y1+y2 is constant (Lawrence 1993). The bottom, interfacial and sidewall frictional
factors are given by:

fb =
−2τb

ρ2u2|u2| , fI =
2τI

ρ�u|�u| , fw =
−2τw

ρiui |ui |
, (2a–c)

where τb, τI and τw are bottom, interfacial and sidewall shear stress, respectively, and
ρ = (ρ1 + ρ2)/2 is the mean density.

For a channel of constant width, substituting the equation for internal energy (1b)
into (1a) yields the differential equation for the slope of the interface:

dy2

dx
=

Sf

1 − G2
, (3)

where the composite Froude number G2 = F 2
1 +F 2

2 (Armi 1986). Two-layer flow is said
to be supercritical, critical, or subcritical depending on whether G2 is greater than,
equal to, or less than unity. In the present study, we will assume maximal exchange
(Armi & Farmer 1986) where the flow is critical at either end of the channel, i.e.

G2 = F 2
1 + F 2

2 = 1 at x = 0, L, (4)

where L is the channel length. Strictly speaking, all the Froude numbers in the above
equations should be multiplied by the momentum correction factor (Henderson 1966),
however, for the flows we are considering, the correction is small compared with other
uncertainties and will be neglected.

3. Analytical solution
The objective of this section is to solve (3) and (4) simultaneously to obtain the

variation in interface position along the length of the channel and the exchange flow
rate. A wide channel is assumed so that sidewall friction can be neglected. We adopt
the convention that flow is from left to right in the upper layer, so u1 is always
positive, and flow is from right to left in the lower layer, so u2 is always negative. For
steady flow without barotropic forcing, the two-dimensional exchange flow rate,

q = u1y1 = −u2y2. (5a, b)

The problem is simplified by using the following non-dimensional parameters:

y∗
1 =

y1

H
, y∗

2 =
y2

H
, E∗

I =
EI

H
, χ =

x

L
, (6a–d)

where the asterisks in y∗
1 , y∗

2 and E∗
I will be dropped hereinafter. The non-dimensional

interfacial deflection from mid-depth (y2 = y1 = 1/2), η, is defined as:

η = y2 − 1
2

= 1
2

− y1. (7)
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The non-dimensional flow rate is represented by the composite Froude number
when η =0:

G0 =
4q√
g′H 3

. (8)

Following Anati et al. (1977) and Zaremba et al. (2003), we parameterize the
frictional effects using:

α =
fbL

H
, rI =

fI

fb

. (9a, b)

Note that the exchange flow problem, as we have defined it, is completely prescribed
by α and rI .

In terms of these non-dimensional parameters the interface slope equation, (3),
becomes:

dη

dχ
=

αG2
0[(1 − 2η)3 + 8rI ]

4(1 − 4η2)3 − 4G2
0(1 + 12η2)

, (10)

and the equation for critical flow at the exits, (4), becomes:

G2 =
G2

0

16
(

1
2

− ηj

)3
+

G2
0

16
(

1
2

+ ηj

)3
= 1 (j = 0, 1), (11)

where the subscript j =0 represents the left-hand side channel exit (χ =0), and j = 1
the right-hand side channel exit (χ = 1). Note that if η0 is a solution to (11), then
η1 = −η0.

For the sake of simplicity, we will assume that the friction ratio, rI = 1, for the
remainder of this section. The general results are presented in the Appendix, they
have the same form as those presented here, but are considerably longer. Integrating
(10) yields the following expression for the variation in interface elevation:

αG2
0χ = a0 + 4η + 12η2 + 16η3 + 8η4 + a1 ln

(
−η + 3

2

)
+ a2

[
1
3
ln

(
η2 + 3

4

)
− 2√

3
tan−1

(
−2η√

3

)]
, (12)

where a0 is the constant of integration, a1 = 2
3
(7G2

0 +128), and a2 = 1
3
(2G2

0 +16). Before
we can use (12) to obtain the variation in η along the channel, we must determine
the flow rate (G0) and the interface elevation at the control points at each end of the
channel (η0, η1).

3.1. Determination of G0, η0 and η1

The exchange flow problem is now expressed in terms of four equations ((11) and
(12) at each end of the channel), in four unknowns, a0, η0, η1 and G0. Taking
the equation obtained by substituting η = η0 at χ = 0 into (12), and subtracting the
equation obtained by substituting η = η1 = −η0 at χ = 1 into (12), we eliminate the
integration constant a0 and obtain the relationship between G2

0 and η at χ = 0:

G2
0 =

−72η0 − 32η3
0 +

256

3
ln

[
η0 + 3

2

−η0 + 3
2

]
− 32√

3
tan−1

[
4

√
3η0

−4η2
0 + 3

]

α − 14
3

ln

[
η0 + 3

2

−η0 + 3
2

]
+

4√
3

tan−1

[
4

√
3η0

−4η2
0 + 3

] . (13)
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The relationship between G2
0 and η at χ = 1 is obtained by substituting η0 = −η1 into

(13):

G2
0 =

72η1 + 32η3
1 +

256

3
ln

[
−η1 + 3

2

η1 + 3
2

]
− 32√

3
tan−1

[
−4

√
3η1

−4η2
1 + 3

]

α − 14
3

ln

[
−η1 + 3

2

η1 + 3
2

]
+

4√
3

tan−1

[
−4

√
3η1

−4η2
1 + 3

] . (14)

The equation relating G2
0 and η at each end of the channel is obtained by rearranging

(11):

η6
j − 3

4
η4

j + 3
16

(
G2

0 + 1
)
η2

j + 1
64

(
G2

0 − 1
)

= 0. (15)

Substituting η2
j ≡ ω + 1/4 into (15) yields:

ω3 +
3G2

0

16
ω +

G2
0

16
= 0. (16)

Equation (16) has one real root and two imaginary roots. The real root is:

ω =
1

2




√(
G2

0

4

)3

+

(
G2

0

4

)2

− G2
0

4




1/3

− 1

2




√(
G2

0

4

)3

+

(
G2

0

4

)2

+
G2

0

4




1/3

. (17)

Setting η1 = +
√

ω + 1/4 and η0 = −
√

ω + 1/4 gives:

η1

η0
= ±

√√√√√1

2
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0

4
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(
G2

0

4
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0

4




1/3
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0

4

)3

+

(
G2

0

4

)2

+
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0

4




1/3

+
1

4
.

(18)

Equations (13), (14) and (18) are illustrated graphically on the (G2
0, η)-plane

(figure 2). The critical flow curve, (18), is a symmetrical bell-shaped curve separating
the supercritical (G2 > 1) and subcritical (G2 < 1) flow regimes. The area within the
curve represents subcritical flow, while the area outside the curve represents the
supercritical flow regime. If, for example, we take α =0.1 and rI =1, then points
a and b represent intersections of (13) and (14) with G2 = 1 at χ = 0 and χ = 1,
respectively. The vertical coordinates of points a and b on the η-axis represent η0 and
η1, respectively, and the horizontal coordinates of both points gives G2

0 representing
the resulting maximal exchange flow rate. With increasing friction, the interface height
at the right-hand exit increases and at the left-hand exit decreases, corresponding to
the decreased exchange flow rate. Since the G2 = 1 curve always intersects the crests
of (13) and (14) on the (G2

0, η)-plane, the exchange flows bounded by two controls at
each end indeed represent the maximal exchange conditions. The resulting maximal
exchange rates for α =0.01, 0.1, 1.0 and 10 (rI = 1) are G0 = 0.915, 0.708, 0.371
and 0.137, respectively. Friction certainly reduces the exchange rate, but provided the
fundamental requirement for maximal exchange is met, the maximal possible exchange
rate is still achieved under given frictional conditions (Armi & Farmer 1987).

3.2. Variation in interface elevation along the channel

To solve for the interface position along the channel, the constant of integration a0

is calculated by substituting G2
0 and either η0 at χ = 0 or η1 at χ = 1 into (12). This

yields a uniquely defined longitudinal interface profile. In figure 3(a), density interface
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Figure 2. Presentation of maximal exchange flow solutions in the (G2
0, η)-plane, where solid

lines are solution curves of varying frictional parameters α(rI = 1), the dotted line represents
the critical boundary condition at each end of the channel. The intersections of solution curves
with G2

0 = 1 represent the values of G2
0 and η at each end of the channel.

positions along the channel are shown for varying frictional effects (α = 0.01, 0.1, 1.0
and 10). In the absence of surface friction, the interface is always slightly above
the mid-depth at the centre of the channel. Given the exchange rates and interface
positions, variations of other important flow parameters within the channel can also be
obtained. Figure 3(b) shows the variations in the composite Froude number along the
channel. The maximal exchange flow is critical at both ends of the channel (G2 = 1).
Within the channel, the composite Froude number drops below unity, representing
subcritical flow conditions, the higher the friction the lower the composite Froude
number at a given location.

3.3. Representation of solution on the Froude-number plane

The maximal frictional exchange flow solutions can also be represented on Armi’s
(1986) Froude-number (F 2

1 , F 2
2 )-plane. Following Armi (1986), the non-dimensional

layer thickness can be expressed as follows:

y1 =

(
G2

0

16F 2
1

)1/3

, y2 =

(
G2

0

16F 2
2

)1/3

. (19)

Combining (19) with the rigid-lid approximation leads to the continuity equation in
the Froude-number plane:

F
−2/3
1 + F

−2/3
2 =

(
G2

0

16

)−1/3

. (20)
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Figure 3. (a) Variation of density interface along the channel for maximal exchange with
varying frictional parameters. Points a and b correspond to locations shown in figure 2.
(b) Variation of the composite Froude number along the channel for maximal exchange with
varying frictional parameters. The interfacial frictional factor is equal to the bottom frictional
factor (rI = 1) for both plots.

The internal energy is rewritten in terms of F 2
1 and F 2

2 :

EI =
F

−2/3
2

(
1 + 1

2
F 2

2

)
− 1

2
F

−2/3
1 F 2

1

F
−2/3
1 + F

−2/3
2

. (21)

In figure 4, contours of constant G0 are superimposed on constant EI contours on
the (F 2

1 , F 2
2 )-plane depicting changes of internal energy and possible internal Froude

number pairs as the interface varies along the channel. The critical condition (G2 = 1)
falls to a straight line separating supercritical and subcritical flows. For frictional
exchange flows, the interface is tilted and the internal energy reduces monotonically
from right to left along the channel. Each G0 contour intersects with G2 = 1 twice at
different values of EI when G0 < 1. These two intersections, shown as hollow circles in
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Figure 4. Maximal frictional exchange-flow solutions represented on the Froude-number
(F 2

1 , F 2
2 )-plane, where contours of G0 (thick lines) are superimposed on constant internal

energy contours (thin lines). Contours of G0 = 0.915, 0.708, 0.371 and 0.137 correspond to
maximal frictional exchange solutions for α = 0.01, 0.1, 1 and 10, respectively (rI = 1). The two
symbols on each of the three G0 contour lines represent flow conditions at the channel exits.

figure 4, represent two controls at either channel exit for maximal frictional exchange.
Subcritical flow within the channel is represented by the G0 curve between the controls.

When the flow is inviscid, the upper and lower layers are of equal thickness
(η = 0) throughout the channel, and the flow is critical throughout the channel
(F 2

1 = F 2
2 = 0.5). This flow condition, shown as the solid circle in figure 4, essentially

depicts the solution of the lock-exchange problem of Wood (1970). The dimensional

flow rate for inviscid flow is
√

g′H 3/4, so G0 = 4q/
√

g′H 3 represents the ratio between
the maximal frictional and inviscid exchange flow rates.

4. Laboratory experiments
Laboratory experiments were conducted in a 370 cm long and 106 cm wide tank

divided into two reservoirs connected by a straight channel 200 cm long, 15.2 cm wide
and 30 cm deep, with zero bottom slope (figure 5a). The front panel of the channel
is made of Plexiglas, enabling observation of the flow. Salt was dissolved in the right-
hand reservoir to make it slightly denser, so the upper layer flows from left to right,
while the lower layer flows from right to left. Removing a barrier separating the two
reservoirs started the experiments. After an initial start-up period, a maximal two-way
exchange with internal hydraulic controls at both ends of the channel was established.
The position of the interface throughout the channel was visualized by dissolving a
fluorescent dye into the lower layer (figure 5b). Particle image velocimetry (Stevens &
Coates 1994) was used to obtain the velocity profile. The exchange flow rate was
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Experiment g′ (cm s−2) q (cm2 s−1) G0 K (χ = 0.5) fb α

1 0.27 14.3 0.74 1700 0.0132 0.094
2 0.49 20.2 0.78 3000 0.0127 0.091
3 0.72 24.0 0.76 3200 0.0116 0.083
4 0.95 28.5 0.79 4400 0.0108 0.077
5 1.14 30.9 0.78 4600 0.0104 0.074
6 1.33 32.4 0.76 4300 0.0095 0.068
7 1.61 36.4 0.78 5200 0.0083 0.059
8 1.83 39.4 0.79 5900 0.0071 0.051

Table 1. List of laboratory experiments.

q

q

L = 200 cm

H

Left end of the channel
Right end of the channel

(b)

(a)

370 cm

Fixed barrier
Left-hand reservoir Right-hand reservoir

ρ2ρ1

Removable barrier

10
6 

cm

Test section
200 cm

Figure 5. (a) Plan view of laboratory experiment set-up. (b) Laser-induced florescence image
showing two-way maximal exchange flow.

obtained by integrating the velocity profile throughout the depth of the fluid. The
average bottom and sidewall friction factors were estimated using the methodology
of Zhu & Lawrence (2000).

A total of eight experiments were conducted (table 1). Throughout the experiments,
the total fluid depth H was kept constant at 28.0 cm, while the reduced gravity g′ was
varied from 0.27 to 1.83 cm s−2. The Keulegan number K = �u3/νg′ calculated using
the velocity shear �u at χ =0.5 varies from 1700 to 5900. Since the velocity shear
changes throughout the channel, this parameter varies slightly along the channel.
The velocity shear increases towards the ends of the channel so K is always
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Figure 6. Comparison of results of experiment 5 with theoretical predictions (α = 0.074 and
rI = 0.79). (a) Density interface position along the channel. (b) The variation of the composite
Froude number along the channel. Symbols with error bars represent laboratory measurements
and solid lines are theoretical predictions.

significantly higher than its critical value, which is in the range of 180 (Turner
1973) to 350 (Browand & Winant 1973), indicating an unstable density interface. The
bulk Richardson number J = (�u)2/g′h ≈ 0.3 (where h is the shear-layer thickness),
and the density interface is sharper than, and is generally displaced with respect
to, the velocity interface, indicating the presence of one-sided Holmboe instabilities
(Lawrence, Browand & Redekopp 1991). While Holmboe interfacial instabilities were
present in the experiments, they are not as pronounced as those studied by Zhu &
Lawrence (2001).

The major source of error in the experiments is in the determination of G0, the
error is due in part to errors in determining the flow rate, but mostly due to the
difficulty in determining the interface level, particularly at the ends of the channel
where interfacial instabilities cause relatively large fluctuations in the interface level
η (figure 6a). The fluctuations of G about the mean were approximately 10 % at the
ends of the channel and 2 % in the centre of the channel, as shown in figure 6b.
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Figure 7. Frictional effects on exchange rate. The solid lines represent the analytical maximal
exchange flow solutions through a wide channel. The symbols represent the laboratory
experimental data and the field measurements in the Burlington Ship Canal.

5. Comparison of analytical solution with laboratory and field observations
This section aims to compare predictions of the analytical solution with the

laboratory experiments and observations from the Burlington Ship Canal, a man-
made canal connecting Lake Ontario with Hamilton Harbour. The analytical solution
assumes a wide channel, where the sidewall friction is negligible. Although such an
assumption is generally sound for natural channels, including the Burlington Ship
Canal, it is not the case for the laboratory channel. To incorporate sidewall friction
into the analysis, Gu (2001) introduced an equivalent interfacial friction factor:

fIe = fI +
H

4b
fw, (22a)

and an equivalent friction ratio:

rIe =
fIe

fb

. (22b)

In the laboratory experiments, the depth to width ratio H/4b =0.46, so sidewall
friction is likely to be important.

The interfacial friction factor cannot be predicted with any accuracy from bulk flow
properties, largely because the manner in which interfacial instabilities influence the
value of fI is still not well understood (Lawrence, Haigh & Zhu 1998). Estimates of fI

were obtained indirectly for each of the experiments. Estimates of fb, obtained using
the methodology of Zhu & Lawrence (2000), and G0 were used in conjunction with
the theoretical formulae (see Appendix) to obtain estimates of rIe. The comparison
between the theoretical and laboratory results is presented in figure 7. Analysis of
the eight experiments yielded an average value of rIe = 0.79 with a standard deviation
of 0.18. Using the average value in conjunction with (22) yields fI = 0.33fb, which
from table 1 ranges from 0.0024 to 0.0044. These results are comparable with those
obtained in laboratory experiments with similar parameter ranges (e.g. Sargent &
Jirka 1987; Arita & Jirka 1987). The results quoted in Zhu & Lawrence (2000)
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appear to be significantly higher, but the fI quoted in that paper is equivalent to fIe

in the present paper.
The measured interface elevations and composite Froude number are compared

with predictions, using α = 0.074 and rIe = 0.79 in figure 6. The agreement is excellent
along the entire length of the channel. The mean values of the composite Froude
number are slightly less than unity at both ends of the channel. This discrepancy is
well within experimental error, but could, in fact, be real (see Garrett & Gerdes 2003).
The composite Froude numbers are slightly higher than predicted in the centre of the
channel, but again are within experimental error. Both the predicted and measured
interfaces are very slightly above the mid-depth at the centre of the channel in the
absence of surface friction. This effect is discussed in more detail in § 6.2.

The Burlington Ship Canal is 836 m long and 89 m wide with an average depth
of 10.7 m, connecting Hamilton Harbour with Lake Ontario. During the summer,
contrast in density between the warm harbour water and the cool lake water drives an
exchange flow, with a oscillating barotropic component due to surface seiches. Dick &
Marsalek (1973) determined that fb ≈ 0.0039, which gives α ≈ 0.3. From Acoustic
Doppler Current Profiler (ADCP) measurements in July 1996, Lawrence et al. (2004)
calculate an average G0 = 0.55 with a standard deviation of 0.08. Comparison of
these values with the theoretical solution yields rI ≈ 1.0 (figure 7) and fI ≈ 0.0039.
This result is encouraging since estimates of the Reynold’s stress, obtained from
analysis of ADCP data, give fI ≈ 0.004 (Lawrence et al. 2004).

The linear frictional exchange flow solution of Anati et al. (1977) is also included
in figure 7 for comparison. Their model was developed for exchange flows through
long channels, where frictional effects are dominant over nonlinear inertial effects.
Furthermore, Anati et al. (1977) ignored interfacial friction and assumed the density
interface followed a straight line linking the two hydraulic controls. This solution
overestimates the exchange flow in shorter channels where inertial effects are more
important. For long channels, the assumption of a constant interface slope prevents
the solution of Anati et al. (1977) from converging to the nonlinear analytical solution
even when interfacial friction is neglected (rI =0).

6. Discussion
6.1. Effects of friction on exchange rates

The frictional parameter α has been widely used as the indicator of the relative
importance of frictional effects to inertial effects. If α � 1, inertial effects dominate,
and the channel is considered to be short. If α � 1, friction dominates, and the
channel is considered to be long. Finally, if α ≈ 1, both frictional and inertial forces
are important, and the channel is considered to be marginal. However, the reduction
in exchange rate can be significant even in short channels, as shown in figure 7. In
each of the laboratory experiments α < 0.1, yet the flow rate is reduced by more than
20 % in each case. For the Burlington Ship Canal with α = 0.3 and rI =1.0, G0 = 0.55.
In this case, bed friction is responsible for a reduction of 17 % in exchange rate,
whereas interfacial friction accounts for a reduction of 28 %. Thus, both α and rI are
important in determining the exchange rate.

To examine the relative importance of interfacial and bottom friction, it is useful
to separate the interfacial friction and bottom friction slopes from the total friction
slope Sf . For wide channels, the total friction slope can be expressed as the sum of
the interfacial friction slope (SfI) and the bottom friction slope (Sfb) in the following
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Figure 8. Variation of friction slope ratio along the channel with three different frictional
ratios of rI . The frictional parameter α is equal to unity.

non-dimensional form:
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. (23)

The relative importance of interfacial and bottom friction can be determined by the
ratio between their corresponding friction slopes, Sr ,

Sr ≡ SfI

Sfb

=

(
fIG

2
0

)/(
32y3

1y
3
2

)(
fbG

2
0

)/(
32y3

2

) = rI

(
1 +

y2

y1

)3

= 8rI

(
1

1 − 2η

)3

(24)

The friction slope ratio, Sr , varies along the length of the channel. At the left-hand
end of the channel (χ = 0), for example, the friction slope ratio is least because the
lower layer is thinnest there. The reduced lower layer thickness means intensified
lower layer flow, and increased bottom friction. While at the right-hand end of the
channel (χ =1), the friction slope ratio is greatest. The variation of the frictional
slope ratio throughout the channel for three different frictional ratios is shown in
figure 8. Even with rI = 0.2, Sr > 1 along most of the channel, i.e. interfacial friction
dominants bottom friction even when the bottom friction factor is five times larger
than the interfacial friction factor.

6.2. Variation in interface height

As a first approximation Anati et al. (1977) and others have assumed a linear variation
in interface height linking the hydraulic controls at each end of the channel. However,
the analytical solution and laboratory experiments show that, while the variation is
almost linear in the middle of the channel, it is curved at both ends as the flow
approaches its hydraulic controls. The analytical solution shows that the density
interface is not only nonlinear, but also asymmetric. This is because for open-channel
exchange flows there is bottom friction acting upon the lower layer, but surface
friction is assumed to be absent. For comparison purposes, the variations in interface
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Figure 9. Normalized interface shapes throughout the channel for maximal exchange flows
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frictional parameter α is equal to unity.

height have been normalized with respect to the interface heights at each end of the
channel. The results for rI = 0.0, 0.2, 0.5 and 1.0 are plotted in figure 9.

Given the absence of surface friction, the interface is always above mid-depth at
the centre of the channel. The interface is more curved near the left-hand end of
the channel than at the right, because the bottom friction increases as the thinner
lower layer exits the channel. Both these effects become more pronounced as the
relative importance of bottom friction increases, i.e. as rI decreases. The interface is
at mid-depth when χ =0.46, 0.44 and 0.41 for rI = 1.0, 0.5 and 0.2, respectively.

7. Conclusions
An analytical solution has been found for two-layer frictional exchange flow through

a wide rectangular channel. This solution is based on the direct integration of the
fully nonlinear one-dimensional shallow-water equation including both inertial and
frictional effects. As a result, the solution is applicable to a wider range of flow
conditions than both inviscid and linear frictional exchange flow solutions. Within
the uncertainty of interfacial friction, the theoretical predictions of the analytical
solution compare well with both laboratory experiments and field flow measurements
in the Burlington Ship Canal.

Both interfacial and bottom friction are important in determining the exchange
flow rate. The resulting exchange flow solutions indicate dramatic exchange flow rate
reductions with increasing frictional effects. Consequently, frictional effects should not
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be ignored even for very small values of the frictional parameter α = fbL/H . The
analytical exchange flow solution indicates that the interface profile is not only
nonlinear, but also asymmetric in nature. This asymmetry is due to the presence
of bottom, but not surface, friction in open-channel exchange flows. The degree of
asymmetry is strongly influenced by the relative importance of interfacial friction.

Funding from the Natural Sciences and Engineering Research Council of Canada
(NSERC) is gratefully acknowledged. G. A. L. is grateful for support provided by the
Canada Research Chairs program.

Appendix. Removal of the restriction rI = 1

For simplicity, (12), (13) and (14) were presented for rI =1. The general expression
for the variation in interface elevation (i.e. the extension of (12)) is:

αG2
0χ = a0 + a1η + a2η
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where a0 is the constant of integration,

a1 = 4(8rI + 1), a2 = 12, a3 = 16, a4 = 8,
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The general expression for the composite Froude number at the left-hand end of the
channel (i.e. the extension of (13)) is:
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The general expression for the composite Froude number at the right-hand end of
the channel (i.e. the extension of (14)) is:
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